聊天機器人的挑戰與發展趨勢

雖然電腦視覺(Computer Vision)透過深度學習(Deep Learning)技術取得了重大進展,但在自然語言處理(Natural Language Processing)領域,深度學習的導入仍然處於發展初期。

以聊天機器人(Chatbot)來說,自從圖靈測試在2014年被聊天機器人Eugene通過後,加拿大學者改進測試的缺失提出了威諾格拉德架構挑戰賽(Winograd Schema Challenge),也是目前最具權威的AI競賽。

該競賽的第一輪是代詞消歧問題(Pronoun disambiguation problems)。舉例來說,當人類分析句子時,會用經驗來理解指代的對象:

  • 市議會拒絕示威者,因為他們害怕暴力。
  • 市議會拒絕示威者,因為他們提倡暴力。

而這個選擇題只有兩個答案,代詞”他們”是指”市議會”還是”示威者”,AI應該要指出在第一句說的是市議會,第二句說的是示威者,從問題上可以發現,系統無法透過這段話的上下文進行理解得到答案,這在傳統實作上必須透過知識圖譜(Knowledge Graph)進行推理,或使用深度類神經網路模型,要通過比賽拿到獎金25,000美金,準確率(Accuracy)必須達到90%以上,但目前最好的成績只有58%,遠比人類低得多。

除了上述根本影響Chatbot問答品質的問題,還有幾個難題仍未被突破:

  1. 通用的架構與模型:為了整合語音辨識、詞法分析、句法分析、語意分析、深度學習,答案搜尋,對話管理、自然語言生成和語音合成等模組,確保其相容性,當前Chatbot架構與模型相當複雜,管理較為困難,如何研發通用的架構與模型,是未來所有同業的發展目標。
  2. 情感分析( Sentiment Analysis ):使用自然語言處理來識別文本中的主觀資訊,例如正面或負面,或尋找更複雜的狀態,例如開心、生氣、哀傷等;可以讓Chatbot與人交互時更有溫度,是目前產學界熱門研究方向。
  3. 開放領域(Open Domain):現在的Chatbot只能做好特定領域的工作,如何建構開放領域的知識,甚至不需要人工建構知識,讓機器自學習,也是產學界正在努力的方向。
  4. 端對端 ( End to end ) :不經過傳統的模組串聯,利用深度學習 ( Deep Learning ) 建立端對端的簡潔模型;達到輸入原始資料後,可直接得到想要的輸出結果,但與此同時還要支援多輪對話管理、上下文情境及知識圖譜推理,避免安全回答,甚至是保持Chatbot個性的一致性,正確的進行指消代解,這些挑戰都是產學界近期的目標。
  5. 基於生成的模型(Generative Model):目前自然語言生成技術 ,可分為基於檢索、基於範本及基於生成兩種方法,三者都可以導入深度學習技術,目前以基於檢索及基於範本為業界主流;雖然深度學習Seq2seq模型非常適合產生文字,但此基於生成方法尚處早期的發展階段,空間和時間複雜度高,實際應用效果不佳。

預訓練語言模型比較(ELMO、BERT、GPT-2)

預訓練(Pre-train)語言模型可用於自然語言理解(Natural Language Understanding)的命名實體識別(Named Entity Recognition)、問答(Extraction-based Question Answering)、情感分析(Sentiment analysis)、文件分類(Document Classification)、自然語言推理(Natural Language Inference)等任務。

以及自然語言生成(Natural Language Generation)的機器翻譯(Machine translation)、自動摘要(Automatic summarization)、閱讀理解(Reading Comprehension)、資料到文本生成(Data-to-Text Generation)等任務。

本文透過列舉時下主流預訓練語言模型的特點,介紹最具代表性的ELMO、BERT及GPT-2模型;用最簡短的文字敘述,讓大家能夠輕易比較出差異。

ELMO(Embeddings from Language Model)

  • RNN-based Language Models
  • 透過一堆句子訓練,不需要標註
  • 預測下一個Token
  • 從RNN的hidden layer取得Contextulize word embedding
  • 從正反向embedding接起來就是上下文的embedding
  • 最後把每一層的embedding都加起來,再由後續任務學習到加權參數
  • 94M個參數

BERT(Bidirectional Encoder Representations from Transformers)

  • 屬於Transformer的Encoder
  • 只需要訓練Transformer的Encoder(輸入輸出一對一)
  • 透過一堆句子訓練,不需要標註
  • 給一個詞序列,每一個詞都會吐embedding
  • 中文更適合用字為單位,因為用one-hot encoding詞太多了;常用中文字約4800個,中文詞則比這個高數倍
  • Masked LM: 輸入詞序列中隨機15%的詞被換成特殊的Token [Mask],並做預測
  • 預測下一個句子: 引入[SEP]代表兩個句子的交界,及[CLS]代表輸出分類結果的位置
  • 上述兩種方法都是把抽出來[Mask]或[CLS]的Vector丟到Linear Multi-class Classifier去預測詞
  • 以上兩種方法要同時使用
  • 340M個參數

GPT-2(Generative Pre-Training)

  • 屬於Transformer的Decoder
  • 預測下一個Token
  • 40GB的文本訓練出來的
  • 可以做到Zero-shot Learning,不需訓練資料,做到Reading Comprehension(F-score=55接近Dr.QA)、Summarization(跟隨機差不多)、Translation(跟隨機差不多)
  • 1542M個參數

聊天機器人的類型與對比(問答、對話與閒聊系統)

由於常常跟客戶和外部工程師雞同鴨講,最後發現大家對聊天機器人的定義都不一樣;你知道Chatbot可以分成三類嗎?部落格AI專欄的第一篇,就來介紹一下「各類Chatbot的用途」,並針對「開發方法」、「特點」、「關鍵評價指標」及「應用場景」等進行深入對比,讓你一次搞懂Chatbot,不再一知半解。

類別問答系統任務導向對話系統閒聊系統
英文Question Answering systemTask-Oriented Dialogue systemChit-Chat Dialogue system
功能回答使用者問題代替使用者完成任務陪伴使用者閒聊
領域特定領域特定領域 開放領域
方法基於Web檢索、基於知識庫、基於社群模組化(基於規則、資料驅動)、端對端(資料驅動)基於檢索、基於生成
特點單輪對話,著重問句分析(識別資訊詞)多輪對話,著重對話管理(對話狀態追蹤、對話策略學習)多輪對話,著重個性化及情感分析
關鍵指標Precision、Accuracy、Recall、F-Measure任務完成率、對話耗時、對話輪數、機器模擬使用者評分詞重疊率、詞向量距離、機器模擬使用者評分
應用場景FAQ、教育助理、訂票閒聊、陪伴
知名案例IBM WatsonSiri、Google Assistant微軟小冰、SimSimi
實作方法基於知識庫的問答系統模組化的任務導向對話系統應用搜尋引擎檢索,或訓練Seq2seq模型生成自然語言