[對話式AI] 模組化的任務導向對話系統實作方法

# 自然語言理解 (Natural Language Understanding)
問句 = input("請輸入你的問題: ") 
使用者動作.意圖 = 意圖識別(問句)
使用者動作.一組槽位 = 槽位填充(問句, 使用者動作.意圖)

# 對話狀態追蹤 (Dialogue State Tracking)
if (使用者動作.意圖 == Null)
  對話狀態.意圖 = 得到意圖(對話歷史)
  對話狀態.一組槽位 = 更新對話狀態(使用者動作.一組槽位, 對話歷史)
else
  對話狀態 = 使用者動作
  填充個性化槽位(對話狀態.一組槽位, 使用者畫像)
  意圖所缺的槽位填入預設值(對話狀態)

# 對話策略學習 (Dialogue Policy Learning)
if (對話狀態.意圖 == Null)
  系統動作.意圖 = "不明"
else if (對話狀態.意圖 == 特定服務)
  if (槽位是否缺失(對話狀態))
    系統動作.意圖 = "對空白槽位提問"
    系統動作.一組槽位 = 對話狀態.一組槽位
   else
    系統動作.意圖 = 特定服務
    系統動作.一組槽位 = 查詢服務API(系統動作.意圖, 對話狀態.一組槽位)

# 自然語言生成 (Natural Language Generation)
if 系統動作.意圖 == "不明"
  問句 = input("我不懂你的意思,請換個方式告訴我: ")
else if 系統動作.意圖 == "對空白槽位提問"
  系統提問 =  提問生成(系統動作)
  問句 = input(系統提問)
else if 系統動作.意圖 == 特定服務
  print(回答生成(系統動作, 回答模板))

[對話式AI – 1] Chatbot的類型與對比(問答、對話與閒聊系統)

由於常常跟客戶和外部工程師雞同鴨講,最後發現大家對聊天機器人的定義都不一樣;你知道Chatbot可以分成三類嗎?對話式AI專欄的第一篇,就來介紹一下「各類Chatbot的用途」,並針對「開發方法」、「特點」、「關鍵評價指標」及「應用場景」等進行深入對比,讓你一次搞懂Chatbot,不再一知半解。

類別問答系統任務導向對話系統閒聊系統
英文Question Answering systemTask-Oriented Dialogue systemChit-Chat Dialogue system
功能回答使用者問題代替使用者完成任務陪伴使用者閒聊
領域特定領域特定領域 開放領域
方法基於Web檢索、基於知識庫、基於社群模組化(基於規則、資料驅動)、端對端(資料驅動)基於檢索、基於生成
特點單輪對話,著重問句分析(識別資訊詞)多輪對話,著重對話管理多輪對話,著重個性化及情感分析
關鍵指標召回率(Recall)、精確率(Precision)、F-Measure任務完成率、對話耗時、對話輪數、機器模擬使用者評分詞重疊率、詞向量距離、機器模擬使用者評分
應用場景FAQ、教育助理、訂票閒聊、陪伴
知名案例IBM WatsonSiri、Google Assistant微軟小冰、SimSimi
實作方法基於知識庫的問答系統模組化的任務導向對話系統應用搜尋引擎檢索,或訓練Seq2seq模型生成